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Abstract

The solar photovoltaic power forecasting (SPPF)
of a PV system is vital for downstream power esti-
mation. While approaches for recent decentralized
PV systems require customized models for each PV
installation, this method is labor-intensive and not
scalable. Therefore, developing a general SPPF
model for a decentralized PV system is essential.
The primary challenge in developing such a model
is accounting for regional weather variations. Re-
cent advancements in weather foundation models
(WFMs) offer a promising opportunity, providing
accurate forecasts with reduced computational de-
mands. However, integrating WFMs into SPPF
models remains challenging due to the complexity
of WFMs. This paper introduces a novel approach,
spatio-temporal knowledge distillation (STKD), to
efficiently adapt WFMs for SPPF. The proposed
STKD-PV models leverage regional weather and
PV power data to forecast power generation from
six hours to a day ahead. Globally evaluated
across six datasets, STKD-PV models demonstrate
superior performance compared to state-of-the-art
(SOTA) time-series models and fine-tuned WFMs,
achieving significant improvements in forecasting
accuracy. This study marks the first application of
knowledge distillation from WFMs to SPPF, offer-
ing a scalable and cost-effective solution for decen-
tralized PV systems.

1 Introduction
According to [Masson et al., 2024], over 1.6 TW of PV sys-
tems were operational globally by 2024, producing 2,136
TWh of electricity, which accounts for 8.3% of global elec-
tricity demand. These PV systems reduced 0.92 gigatons of
CO2 emissions, equivalent to 2.5% of global energy-related
emissions. Accounting for more than 40% of the PV systems,
the decentralized PV systems play an important role in global
renewable energy infrastructure.

A decentralized PV system refers to a solar power setup
where electricity generation is distributed across multiple lo-
cations rather than being concentrated in a single, large-scale

facility [Zisos et al., 2024]. Decentralized PV systems pro-
duce electricity near where it is consumed, reducing the need
for long-distance transmission and minimizing energy losses
associated with transporting electricity [Kim and Bae, 2017].
SPPF is one of the most fundamental applications for decen-
tralized PV systems since SPPF performs as a prepositive
task for a number of PV-oriented applications (e.g., electric
grid management, solar intermittency migration, power trad-
ing, etc.) [Mansoor et al., 2023]. SPPF involves predicting
the power generation of PV systems on various time horizons
[Antonanzas et al., 2016]. Traditionally, elaborating individ-
ual SPPF models for each PV is required in decentralized PV
systems, which is labor-intensive for SPPF developers and
thus not scalable [Gaboitaolelwe et al., 2023]. A general
SPPF model is imperative for a decentralized PV system.

As highly related to weather, existing studies of SPPF place
an emphasis on addressing the challenge of analyzing the im-
pact of weather variation on PV power generation [Ahmed et
al., 2019]. Traditional SPPF approaches obtain the weather
information from the numerical weather prediction (NWP)
models, which are a set of mathematical models of the atmo-
sphere and oceans that predict the weather based on current
weather conditions [Travieso-González et al., 2024]. How-
ever, using NWP models faces two limitations: 1) the require-
ments for extremely high computational resources, which can
limit the accessibility and affordability of NWP models for
SPPF developers, and 2) the errors and uncertainties of NWP
models can propagate and amplify in the forecast, affect-
ing the accuracy and reliability of SPPF. Recently, weather
foundation models (WFMs) show potentials to break these
bottlenecks since WFMs can provide highly accurate global
weather forecasts up to 14 day ahead with less computation
resource [Lam et al., 2023].

Developed along with advanced deep learning techniques
and enormous global climate datasets, the WFMs increas-
ingly raise attentions and may be considerable for SPPF tasks
[Hamann et al., 2024]. Figure 1 shows a real-world decentral-
ized PV system in California, USA. The weather variation
changes significantly across this region, where the distance
between the two PVs furthest apart is 930km. The WFMs
generally operate at 0.25° resolution (28km x 28km at the
equator) and thus are suitable for providing regional weather
information for decentralized PV systems.

However, efficiently utilizing the WFMs to develop SPPF



models is still challenging. There are three possible
paradigms of adapting WFMs to SPPF models: sequential
modeling [Ahmed et al., 2022], fine-tuning [Ding et al.,
2023], and knowledge distillation. The sequential modeling
and fine-tuning incorporate the complete body of WFMs and
output a large model with a redundant structure. SPPF mod-
els developed in these two ways have two main limitations: 1)
The ceiling of these SPPF models is rather lower since, intu-
itively, there is non-indigenous weather knowledge irrelevant
to SPPF of specific PVs reserved in the output models; and 2)
Both the training and inference phases of these SPPF models
induce high computational overhead which escalates the cost
of PV sectors. Taking GraphCast as a reference, the training
of GraphCast takes four weeks on 32 Cloud TPU v4 devices
and the inference of GraphCast takes one minute on a single
Cloud TPU v4 device [Lam et al., 2023]. Knowledge distil-
lation, a novel deep learning paradigm proposed by [Hinton,
2015], is feasible to address these problems.

Knowledge distillation learns a smaller refined model to
mimic the performance of a large comprehensive model. The
SPPF models distilled from WFMs can benefit from the fol-
lowing aspects: 1) the model architecture can be flexibly elab-
orated to fit the characteristics of SPPF; 2) the training is ef-
ficient since WFMs can provide informative weather-related
knowledge; and 3) the output SPPF models are much more
compact and thus affordable for the PV sectors and residen-
tial users. The main challenge of distilling WFMs to SPPF
is that a model is required not only to inherit weather-related
knowledge from WFMs but also to reserve generalizability
for SPPF of specific PVs.

To address this challenge, in this paper, we proposed
spatio-temporal knowledge distillation (STKD) from WFMs
to SPPF. It outputs STKD-PV models for SPPF, which takes
the regional weather data and PV power data as input and
forecasts six hour to day-head PV power generation. We eval-
uated the STKD-PV models over six real-world datasets dis-
tributed worldwide. The results show that STKD-PV models
outperforms than a set of five SOTA time-series models and
models developed by fine-tuning the WFMs. The SKTD-PV
models can achieve an average MAE of 0.0497 over the six
datasets. We summarized our contribution as:

1. We formulated the problem of SPPF for decentralized
PV systems. We explored to utilize the WFMs to en-
hance the decentralized SPPF by knowledge distillation.
To the best of our knowledge, this is the first study to
perform knowledge distillation from WFMs for SPPF.

2. To address the challenges of developing SPPF models
from WFMs, we proposed the STKD-PV, which outputs
transformer-based models for SPPF by spatio-temporal
knowledge distillation from WFMs and fine-tuning with
PV power data of the decentralized PV system;

3. We evaluated STKD-PV on six real-world solar power
datasets. The results show that STKD-PV can accurately
forecast six hour to a day ahead PV power generation
and outperform the SOTA time-series models.
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Figure 1: Real-world decentralized PV systems in California, USA

2 Related Work
2.1 SPPF Models
Traditional approaches of SPPF obtain the weather informa-
tion from the physical models, e.g., the NWP models. SPPF
models are developed with regional meteorological informa-
tion integrated by using the forecasts of NWP models [Ver-
bois et al., 2022; Mayer et al., 2023].

Recently, there has been an increasing number of deep
learning models for SPPF that incorporate weather informa-
tion with power-related PV system data. [Lim et al., 2022]
proposes a CNN-LSTM hybrid model for SPPF where the
CNN classifies the weather condition and the LSTM learns
power generation patterns. [López Santos et al., 2022] devel-
ops a temporal fusion transformer for day-ahead SPPF. [Yan
et al., 2021] performs short-term SPPF by using a frequency-
domain decomposition-based CNN. These studies are limited
since models are developed for individual PVs and have in-
sufficient generalizability within decentralized PV systems.

2.2 Weather Foundation Models
As a significant advancement in the use of AI for meteorol-
ogy, WFMs are trained with vast global weather data and of-
fer the potential for faster and more accurate weather predic-
tions, which can be crucial for planning and responding to
weather-related events [Chen et al., 2023]. WFM learn the
intricate relationships between weather and geography, cap-
turing meteorological interactions and spatial dependencies
between grids [Mukkavilli et al., 2023]. There is a flour-
ish of well-developed WFMs such as: GraphCast by Google
DeepMind [Lam et al., 2023], Pangu-Weather by Huawei [Bi
et al., 2023], FourCastNet by NVIDIA [Kurth et al., 2023],
and ClimaX and Aurora by Microsoft [Bodnar et al., 2024;
Nguyen et al., 2023]. WFMs provides opportunities for SPPF
models to learn the impact of meteorological variation on spe-
cific sites of PV systems.

2.3 Knowledge Distillation
Formally popularized by [Hinton, 2015], knowledge distilla-
tion is transferring knowledge from a large complex model
(referred to as the ”teacher”) to a smaller model (known as
the ”student”). It is successfully applied in numerous do-
mains such as object detection [Li et al., 2022; Zhang et al.,
2023], large language models [Guo et al., 2025], computer
vision [Beyer et al., 2022], etc. There also are existing ef-
forts to transfer weather-related knowledge from a weather
model by using knowledge distillation. [He et al., 2024] dis-
tilling physical knowledge from a differential equation net-



work to a spatio-temporal transformer network. [Tang et
al., 2023] develops a spatio-temporal graph knowledge dis-
tillation to enhance regional weather prediction. Though in-
corporate modules to distill spatio-temporal knowledge from
pre-trained weather models, these studies still show limita-
tions: 1) the teacher models are regional weather models, pre-
trained with non-global weather data, and can hardly integrate
the global meteorogeographical patterns; and 2) the student
models are still weather prediction models, rather than SPPF
models. It is still unknown if these distilled models performs
well when adapting them to SPPF tasks. In this paper, we try
to address these problems by using WFMs as teacher model
and develop strategies to reserve the generalizability for SPPF
during knowledge distillation.

3 Problem Statement
SPPF for decentralized PV systems can be viewed as a mul-
tivariate time-series prediction task within a target region
where the decentralized PV system is located. The target re-
gion can be represented by a geographical grid, which is a
two-dimensional graph G = (V, E). V is a node-set that de-
notes the geographical grid points, and E is an edge set that
represents the geographical proximity among different grid
points. The weather data within the target region is denoted
as Xw ∈ RT×N×dw

, where N is the number of geographical
grid points, T is the length of time-series, and dw is the di-
mension of weather variables. The power data collected from
the decentralized PV system is denoted as Xp ∈ RT×M×dp

,
where M is the number of terminal PV within the decentral-
ized PV system and dp is the dimension of power variables of
a single terminal PV. The problem of SPPF for decentralized
PV system can thus be represented as follows:

Given a target region G, H steps of historical weather con-
ditions Xw

(t−H+1):t, and historical power generation of a de-
centralized PV system Xp

(t−H+1):t, for a terminal PV pm
within the decentralized PV system, the SPPF aims to learn a
function F (·) to predict Q steps of future power generation:

Xpm

(t+1):(t+Q) = F (G,Xw
(t−H+1):t,X

p
(t−H+1):t), (1)

where Xw
(t−H+1):t ∈ RH×N×dw

, Xp
(t−H+1):t ∈ RH×M×dp

,
and Xpm

(t+1):(t+Q) ∈ RQ×1×1.

4 Methodology
The proposed STKD-PV architecture consists of three main
components: 1) spatio-temporal transformer as the back-
bone of decentralized SPPF; 2) knowledge distillation from
WFMs to the backbone model; and 3) fine-tuning the dis-
tilled model with power data of decentralized PV systems to
obtain SPPF models for terminal PVs.

4.1 Spatio-temporal Transformer
The decentralized SPPF requires a backbone model to: 1)
incorporate the knowledge of spatio-temporal variation of re-
gional weather from WFMs effectively; and 2) reserve gener-
alizibility for the SPPF of specific terminal PVs within the
decentralized PV system. We accordingly elaborated the

STKD-PV model, which consists of two parts: 1) STKD-
RW for learning regional weather and 2) an adapter head for
adapting to SPPF. Here, we focus on the STKD-RW and leave
the adapter head in Section 4.3.

STKD-RW is a stack of multiple transformer blocks with
spatial and temporal modules starting with an embedding
layer. Specifically, the input historical weather condition Xw

is first encoded to obtain the representation E ∈ RH×N×d by
an embedding layer, where d is the dimension of the feature
representation. To encode the temporal information, we add
the positional encoding to the output embeddings as follows:

PE(i,pos) =

{
sin(pos/10002k/d)1, if i = 2k,

cos(pos/10002k/d)1, if i = 2k + 1,
(2)

Z(0) = PE + E (3)

where PE ∈ RH×N×d, pos is the positional index of the
time step, i = 1, ..., d is the index of feature dimension, and
1 ∈ RN is a vector of all ones. The obtained Z(0) is fed into
the spatio-temporal modules for further manipulation.

Spatial Attention Module To extract the spatial depen-
dency of regional weather conditions among the grid points
within the target region, we introduced a spatial attention
module. The regional geographical grid Gregion can be split
from the global graph Gglobal. A geographical adjacency ma-
trix Gregion can be derived from Gregion, where the con-
nected edges are set as 1 and others as 0.

We use the multi-head attention mechanism to capture the
spatial diversity of regional weather, where h heads of atten-
tion are calculated and concatenated as features of the next
block. Denote the input of l-th block as Z(l) ∈ RH×N×d,
the query, key, and value matrices of an attention head can be
computed as:

Q(l) = Z(l)W(l)
Q ,K(l) = Z(l)W(l)

K ,V(l) = Z(l)W(l)
V , (4)

where WQ, WK , WV ∈ RN×d/h are the linear projection
matrices for query, key, and value. The spatial attention score
of i-th head can be calculated as:

head(l)i = softmax(
Q(l)KT (l)

√
d

⊙ Gregion)V(l), (5)

where ⊙ denotes the element-wise multiplication operator.
The results of multi-head attention can be concatenated ac-
cordingly as follows:

MultiHead(l) = CONCAT(head(l)
1 , ..., head(l)

h )W(l)), (6)

Z(l)
spatio = LayerNorm(Z(l) + MultiHead(l)), (7)

where W(l) is a projection matrix of the multi-head atten-
tion at l-th block. To stabilize the training, we adopt residual
connection and layer normalization after each block of multi-
head spatial attention.
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Figure 2: The proposed STKD-PV architecture

Temporal Convolution Module Given the output of the
l-th spatial attention, for capturing the temporal dynamics of
the regional weather conditions, we use a standard 1D convo-
lution layer with the length of K to force on processing along
the temporal dimension, as expressed in the following:

Z(l)
temporal = LayerNorm(Z(l)

spatio + Conv(l)(Z(l)
spatio)) (8)

Following the regular operation in the Transformer struc-
ture, we also apply layer normalization after residual connec-
tions at the end of the temporal convolution layer. The output
is finally fed to a feed-forward layer to introduce non-linearity
and further transform the learned representation:

Z(l+1) = FFN(l)(Z(l)
temporal) (9)

4.2 Knowledge Distillation from WFMs
In the knowledge distillation, the WFMs perform as teacher
networks, and the STKD-RW models perform as student net-
works. The output of WFMs is firstly pre-processed to align
the forecasting horizon with SPPF tasks. We use hybrid dis-
tillation strategy to train the STKD-RW models.
Pre-processing of WFM output The inputs of a WFM
is the latest previous observed global weather conditions
Xw

(t−1):t, and the outputs is the predicted global weather con-
dition of the next time step Xw

t:(t+1). There is a mismatch
of prediction horizons between the WFMs and their student
networks. To handle this, we introduced a weather data com-
position by taking auto-regressive prediction with WFMs and
concatenating the continuous time steps of predicted weather
conditions:

X̂w
(t+1):(t+Q) = CONCAT(X̂w

t+1, X̂
w
t+2, ..., X̂

w
t+Q), (10)

where X̂w
t+i is the i-th time step of future weather conditions

predicted by the WFM and X̂w
(t+1):(t+Q) is the composited

future weather conditions over Q time steps. Note that the
the output of WFMs is still a global weather condition, and
the regional weather condition for knowledge distillation can
be easily split from the global weather condition.

Hybrid Distillation Strategy To retain the generalizability
of STKD-RW models during the knowledge distillation for
the downstream SPPF tasks, we introduced the masked self-
supervised distillation, and data-free and data-driven distil-
lation. These distillation strategies can be flexibly combined
and conducted together.

Masked Self-supervised Distillation We follow the
masked self-supervised learning to enhance the generalizabil-
ity of our model in the spatial dimension [Hou et al., 2022].
During the knowledge distillation training, the geographical
adjacency matrix Gregion is randomly masked with a pre-
defined masking threshold. With such masking, weather in-
formation of partial grid points is missing, so the trained
STKD-RW models are enforced to infer the weather condi-
tion of a certain grid point by gathering information from its
adjacent points as far as possible. This enhances the general-
izability of STKD-RW models over the target region.

Data-free and Data-driven Distillation To enhance the
generalizability in the temporal dimension, we combined
data-free and data-driven distillation. Denoting the predic-
tion results of the student networks as Ŷstudent ∈ RQ×N×d,
the distillation loss is defined by calculating the distance be-
tween Ŷstudent and the output of regional weather conditions
Yteacher from the WFMs:

Ld = ∥Yteacher − Ŷstudent∥2. (11)
For data-free distillation, the input data of WFMs is ran-

domly generated from a pre-defined Gaussian distribution.
The WFM takes the input and outputs Yteacher as labels of
future weather conditions. The student network also takes the
input and outputs predicted weather condition Ŷstudent and is
trained by back propagation of the distillation loss Ld.

For data-driven distillation, the training data is the true
data, where the ground truth future weather condition Y is
used as labels. The loss in this process is comprised of two
parts: the distillation loss Ld and prediction loss Lp:

Ls = αLd + (1− α)Lp, Lp = ∥Y − Ŷstudent∥2, (12)



where α is the weight to balance the distillation loss and pre-
diction loss. By default, we conduct data-free and data-driven
distillation sequentially.

4.3 Fine-tuning for SPPF
For a single terminal PV within a decentralized PV sys-
tem, the power data of the target decentralized PV system
Xp ∈ RT×M×dp

is used to fine-tune the distilled STKD-RW
models into STKD-PV models. Xp is combined with the out-
puts of the STKD-RW models and passed through an addi-
tional adapter head. The adapter head is built with a similar
structure to the temporal convolution module for further cap-
turing the time-series dynamics of PV power data:

Zp = CONCAT(Xp,Outputstudent) (13)

Yp = Linear(Conv(Zp)) (14)
During the fine-tuning process, the parameters of STKD-RW
are frozen, and only the parameters of the adapter head are
updated with the mean squared error loss.

5 Evaluation
5.1 Evaluation Methodology
Datasets Two parts of time-series data are required in our
evaluation: weather data and PV power data. For the weather
data, we follow the WFMs and adopt ERA5 [Hersbach et al.,
2020], which is a climate reanalysis dataset covering the pe-
riod 1950 to the present. ERA5 is being developed through
the Copernicus Climate Change Service (C3S) 1. ERA5 cov-
ers the Earth on a 0.25 degree latitude-longitude grid and pro-
vides hourly estimates of a large number of atmospheric, land
and oceanic climate variables. For the PV power data, we se-
lect five public datasets2 and collect a private dataset for de-
centralized PV systems, the specifications of which are shown
in Table 1. The regions of these datasets cover the world,
which can verify the performance of the proposed STKD-PV
on a global scale and thus ensure the scalability of STKD-PV.
Weather Foundation Models We select four impactive
WFMs as the knowledge source of weather conditions for
SPPF in the experiments: GraphCast by Google DeepMind,
Pangu-Weather by Huawei, FourCastNet by NVIDIA, and
Aurora by Microsoft. All these four WFMs can provide high-
resolution, accurate global weather forecasts. We conduct the
knowledge distillation for STKD-PV by using the four WFMs
as teacher models individually.
Baseline models To conduct a comparison study for the
proposed STKD-PV, considering that the solar power data
and weather condition data are both time-series data in essen-
tial, we select five SOTA time-series models that are widely
practiced in real-world applications as our baseline models:

• TimesNet [Wu et al., 2022]: It is a convolution-based
network that focuses on discovering the periodicity
within the input time-series data. It utilizes a Fourier

1https://climate.copernicus.eu/
2https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/

electrical-sustainable-energy/photovoltaic-materials-and-devices/
dutch-pv-portal/pv-power-databases

Transform to transform the input 1D time-series data
into 2D tensors so that the convolutional kernels can de-
tect the inter- and intra-period variation of the input.

• Autoformer [Wu et al., 2021]: It renovates the Trans-
former as a deep decomposition architecture, which can
progressively decompose the trend and seasonal compo-
nents during the time-series analysis process.

• STGCN [Yu et al., 2017]: It is a spatio-temporal graph
convolutional network for time-series prediction tasks
by using complete convolutional structures.

• TCGAN [Huang and Deng, 2023]: It is a convolutional
GAN for time-series data, which learns by playing an
adversarial game between two CNNs (i.e., a generator
and a discriminator) in the absence of label information.

• TimeGAN [Yoon et al., 2019]: It is a GAN for generat-
ing realistic time-series data that combines the flexibility
of the unsupervised paradigm with the control afforded
by supervised training.

All these models are trained with regional weather data and
PV power data. Besides, we also consider fine-tuning the
WFMs with PV power data as our baselines. Specifically, an
adapter head is added after a WFM to integrate the PV power
data and further training for SPPF. During the fine-tuning,
the parameters of the WFMs are frozen, and the adapter
head’s parameters are updated. We extend the four afore-
mentioned WFMs with adapter heads as the backbone for
fine-tuning, which are denoted as GraphCast-PV, Pangu-PV,
FourCastNet-PV, and Aurora-PV, respectively.

Metrics To measure the performance of developed SPPF
models, we use the mean absolute error (MAE), root mean
squared error (RMSE), and the coefficient of variation of root
mean squared error (CV-RMSE) as our metrics (lower is bet-
ter), which are all widely adopted metrics in the energy do-
main [Granderson et al., 2016].

Configuration We split each dataset into non-overlapping
subsets by 7:1:2 partitions along with the time dimension as
our train/validate/test set. Each data set is normalized prior
to training. The frequency of time-series is synchronized to
15 min. By default, the input sequence length and output se-
quence length of models are set to 24 time step (6 hours).
For our method, STKD-PV is trained with an Adam opti-
mizer with maximum 200 epochs. The number of spatio-
temporal blocks of STKD-PV models is set to three. The
balance weight between distillation loss and prediction loss
is set to 0.4. The masking rate of masked self-supervised dis-
tillation is set to 0.15. The dimension of the embedding layer
is set to 256. The results are concluded with 10 trials using
different random seeds.

5.2 Results
Overall performance Table 2 shows that STKD-PV mod-
els outperform the baseline models on all six datasets. STKD-
PV can achieve best performance on all three metrics re-
ported. This indicates that STKD-PV can accurately per-
form SPPF worldwide. The MAEs of STKD-PV are 0.0584,
0.0336, 0.0406, 0.0578, 0.0453, and 0.0607 on the six dataset,

https://climate.copernicus.eu/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/electrical-sustainable-energy/photovoltaic-materials-and-devices/dutch-pv-portal/pv-power-databases
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/electrical-sustainable-energy/photovoltaic-materials-and-devices/dutch-pv-portal/pv-power-databases
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/electrical-sustainable-energy/photovoltaic-materials-and-devices/dutch-pv-portal/pv-power-databases


Dataset Region Duration Frequency Num. of PV Num. of Variables
HKPV (Private) Hong Kong Apr 2022 - Dec 2023 15 min 17 11
Solar Centre DKA Australia Jan 2009 - Dec 2024 5min 40 12
Solar2-Irece Brazil Jul 2018 - Jul 2019 15min 96 25
PVDAQ NREL USA Dec 2018 - Nov 2023 15min 157 9
Open Power System Data EU Jan 2015- Sep 2020 15,30,60min 32 6
PVSPEG UK Jul 2013 - Nov 2014 1min 20 30

Table 1: Specifications of PV datasets

respectively. We emphasis the optimal values of MAE,
RMSE, and CV-RMSE with bold font in Table 2.

We have observations as follows: 1) Compared to SOTA
time-series models, the STKD-PV models perform better
since they not only consider the spatio-temporal features of
regional weather but also learn high-level global weather
knowledge from WFMs. Specifically, STKD-PV models im-
prove 65.04% of MAE, 57.46% of RMSE, and 44.39% of
CV-RMSE, respectively, as compared to the SOTA time-
series models; 2) Compared to models directly fine-tuned
from WFMs which redundantly reserve information irrele-
vant to weather of the target regions, the STKD-PV mod-
els refine the regional weather information and remove this
irrelevant information. Specifically, STKD-PV models im-
proves 20.98% of MAE, 20.77% of RMSE, 25.10% of CV-
RMSE respectively as compared to the models by fine-tuning
WFMs; 3) Within the STKD-PV models, their performance
differ from each other. The models distilled from Aurora
outperform models distilled from other WFMs. This is be-
cause compared to GraphCast, Pangu, and FourCastNet, Au-
rora is a more general system that can learn from many di-
verse datasets and adapt to various prediction tasks. Specif-
ically, STKD-PV distilled from Aurora improves 29.86% of
MAE, 39.08% of RMSE, 18.41% of CV-RMSE as compared
to those distilled from other WFMs.
Internal factors We analyze three internal factors which
may influence the performance of STKD-PV models: 1)
masked self-supervised distillation, 2) data-free and data-
drive distillation, and 3) spatio-temporal modules. Since
STKD-PV distilled from Aurora performs best, we use it as
the default setting in the following evaluation.

Figure 3: Comparison of distillation with and without mask

Masked Self-supervised Distillation Figure 3 shows the
results of STKD-PV with and without masked self-supervised
distillation. Compared to STKD-PV without masked self-
supervised distillation, STKD-PV performs better on both

MAE and RMSE over a six to 24-hour forecasting horizon.
Specifically, STKD-PV models have an average improvement
of 13.76% on MAE and 23.24% on RMSE. This reveals that
masked self-supervised distillation can successfully improve
the generalizability of STKD-PV models and thus achieve
better performance.

Figure 4: Comparison of data-free and data-driven distillation

Data-free and Data-Driven Distillation To evaluate the
strategy of data-free and data-driven distillation, we devel-
oped STKD-PV models with three strategies: data-free distil-
lation only, data-driven distillation only, and combining data-
free and data-driven distillation together. The size of the
training data of data-free distillation stays the same as that
of the ground truth training data. Figure 4 shows the compar-
ison results. The combined strategy outperforms the individ-
ual data-free and data-driven strategy. Compared to data-free
distillation, combined strategy can have an average improve-
ment of 19.84% on MAE and 17.27% on RMSE for STKD-
PV models. Compared to data-driven distillation, it also im-
proves 9.44% on MAE and 10.94% on RMSE averagely. This
indicates that both data-free and data-driven distillation strat-
egy are effective for enhancing the STKD-PV models.

Figure 5: Comparison of STKD-PV and its three varieties

Spatio-temporal Modules To evaluate effectiveness of
designed spatio-temporal modules, we developed three vari-
ants of STKD-PV: STKD-PV-rS: STKD-PV with spatial at-
tention module replaced by a dense layer; STKD-PV-rT:



Model HKPV Solar Centre DKA Solar2-Irece
MAE RMSE CV-RMSE MAE RMSE CV-RMSE MAE RMSE CV-RMSE

TimesNet 0.2771 0.3453 0.6732 0.0875 0.1433 0.4747 0.1950 0.2518 0.4879
AutoFormer 0.3058 0.3707 0.7303 0.1751 0.2366 0.5095 0.3530 0.4059 0.6759
STGCN 0.3089 0.3705 0.7298 0.1727 0.2408 0.5384 0.3530 0.4051 0.6741
TCGAN 0.2114 0.2458 0.6307 0.1987 0.2552 0.5320 0.2077 0.2452 0.4847
TimeGAN 0.2073 0.2450 0.6329 0.2272 0.2982 0.5985 0.2906 0.3591 0.5261
GraphCast-PV 0.0843 0.1465 0.4804 0.0729 0.1273 0.4718 0.0861 0.1409 0.4062
Pangu-PV 0.0814 0.1394 0.4848 0.0843 0.1456 0.4944 0.0936 0.1676 0.4699
FourCastNet-PV 0.1156 0.1879 0.4594 0.1216 0.2056 0.5147 0.1181 0.1961 0.4346
Aurora-PV 0.0712 0.1005 0.4164 0.0637 0.0619 0.4204 0.0528 0.0690 0.3331
STKD-PV(GraphCast) 0.0745 0.1275 0.3567 0.0583 0.1018 0.2961 0.0689 0.1127 0.3122
STKD-PV(Pangu) 0.0634 0.0935 0.3376 0.0674 0.1165 0.3136 0.0749 0.1341 0.3523
STKD-PV(FourCastNet) 0.0894 0.1476 0.3604 0.0973 0.1645 0.3564 0.0945 0.1569 0.3919
STKD-PV(Aurora) 0.0584 0.0721 0.3113 0.0336 0.0476 0.2435 0.0406 0.0531 0.2753

Model PVDAQ NREL Open Power System Data PVSPEG
MAE RMSE CV-RMSE MAE RMSE CV-RMSE MAE RMSE CV-RMSE

TimesNet 0.0963 0.1590 0.3173 0.1341 0.1646 0.3335 0.1592 0.2337 0.3090
AutoFormer 0.1099 0.1750 0.3492 0.1313 0.1581 0.3018 0.1463 0.2064 0.2766
STGCN 0.1047 0.1683 0.3359 0.1314 0.1381 0.3023 0.1472 0.2044 0.2739
TCGAN 0.1404 0.1850 0.3268 0.1220 0.1287 0.2819 0.1452 0.2005 0.2602
TimeGAN 0.1350 0.1839 0.3245 0.1202 0.1270 0.2701 0.2272 0.2524 0.3293
GraphCast-PV 0.0904 0.1366 0.2945 0.0703 0.0869 0.2013 0.0798 0.1230 0.1794
Pangu-PV 0.0871 0.1283 0.2886 0.0736 0.0921 0.2214 0.0759 0.1140 0.1543
FourCastNet-PV 0.0991 0.1579 0.3074 0.0741 0.1015 0.2263 0.0824 0.1286 0.1803
Aurora-PV 0.0783 0.1084 0.2512 0.0566 0.0689 0.1599 0.0779 0.1170 0.1649
STKD-PV(GraphCast) 0.0723 0.1093 0.2415 0.0562 0.0695 0.1436 0.0638 0.0984 0.1491
STKD-PV(Pangu) 0.0697 0.1026 0.2178 0.0589 0.0737 0.1613 0.0623 0.0936 0.1436
STKD-PV(FourCastNet) 0.0793 0.1263 0.2651 0.0593 0.0812 0.1639 0.0659 0.1029 0.1536
STKD-PV(Aurora) 0.0578 0.0867 0.1781 0.0453 0.0551 0.1279 0.0607 0.0912 0.1473

Table 2: Overall Performance across six PV datasets and ERA5 data

STKD-PV with temporal convolution module replaced by
a dense layer; and STKD-PV-rST: STKD-PV with both
spatio-temporal modules replaced by dense layers. Figure 5
shows that STKD-PV outperforms the three developed va-
rieties. Specifically, STKD-PV lower 20.82%,8.25% and
34.31% of MAE as compared to STKD-PV-rS, STKD-PV-
rT, and STKD-PV-rST. STKD-PV also lower 20.43%, and
11.70%,29.70% of RMSE correspondingly. This demon-
strates that both the elaborated spatial attention module and
temporal convolution module are crucial for learning the
spatio-temporal variation of the regional weather and thus can
improve the performance of STKD models.

Figure 6: Performance of STKD-PV on different hyper-parameters

Hyper-parameter Analysis we conduct a hyper-parameter
analysis on three vital hyper-parameters of STKD-PV: 1) the
number of blocks of spatio-temporal modules; 2) the balance
weight α between the distillation loss and prediction loss; and
3) the mask rate on the geographical grid during the masked
self-supervised distillation.

Figure 6 shows the variation of MAE to the hyper-
parameters. For the number of spatio-temporal blocks, we
can observe that models with three spatio-temporal blocks
perform best. We can also see that a smaller number of blocks
may lead to insufficient distillation, and a larger number of
blocks may lead to a redundant model structure. For the bal-
ance weight α, we can observe that the optimal value of α
is 0.4. Larger α leads to overdependent on distilling from the
WFM and smaller α results in insufficient distillation. For the
mask rate during distillation, we can observe that the optimal
value is 0.15. A larger mask rate will make the distillation
tough, and a smaller mask rate may lower the generalizability
of STKD-PV models.

6 Conclusion
In this paper, to adapt the knowledge of WFMs for SPPF,
we proposed the STKD-PV model which consists of spatio-
temporal transformers. STKD-PV model is first trained by
distilling knowledge from WFMs and then fine-tuned with
PV power data. To enhance the generalizability of the
STKD-PV model, we introduce a hybrid knowledge distilla-
tion strategy that includes masked self-supervised distillation,
as well as data-free and data-driven distillation approaches.
Experimental results demonstrate that the STKD-PV model
achieves significant performance improvements, surpassing
baseline models.
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