Ontology Integration for Building Systems and Energy Storage

Systems
Fang He Dan Wang Yaojie Sun
The Hong Kong Polytechnic Univ. The Hong Kong Polytechnic Univ. Fudan Univ.
Kowloon, Hong Kong Kowloon, Hong Kong Shanghai, China
fangf.he@connect.polyu.hk dan.wang@polyu.edu.hk yjsun@fudan.edu.cn

ABSTRACT

A building ontology defines the concepts and organization of build-
ing data. Such knowledge can be assistance with automatic data
access and support data-driven applications in buildings. With
technological advances in batteries and energy storage, an increas-
ing number of data-driven building applications now involve both
building systems and energy storage systems (ESS), e.g., peak load
shaving (PLS). However, existing building ontologies, e.g., Brick,
are not designed to include concepts from ESS systems. Given the
emergence of building-ESS applications, it has become important to
develop ontologies that can cover knowledge about both building
and ESS systems.

Building systems and ESS systems fall under different indus-
try sectors and there are building ontologies and ESS ontologies
that have been developed independently. To maximally reuse ex-
isting knowledge, we leverage ontology integration technologies.
We present a building-energy storage ontology integration (BE-
SOI) system that can extend a building ontology with appropriate
ESS ontologies. Our system handles ambiguity, incoherence, and
redundancy problems in ontology integration. We evaluate BESOI
on four building-ESS applications by extending Brick, a notable
building ontology, with different ESS ontologies. The results show
that BESOI can extend the coverage of Brick from 68.09% to 95.74%
on the concepts of applications.

CCS CONCEPTS

« Information systems — Data Management System.

KEYWORDS

Building Application, Energy Storage System, Metadata, Ontology
Integration

ACM Reference Format:

Fang He, Dan Wang, and Yaojie Sun. 2023. Ontology Integration for Build-
ing Systems and Energy Storage Systems. In The 10th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transporta-
tion (BuildSys "23), November 15-16, 2023, Istanbul, Turkey, 4 pages. https:
//doi.org/10.1145/3600100.3623720

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BuildSys "23, November 15-16, 2023, Istanbul, Turkey

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0230-3/23/11...$15.00
https://doi.org/10.1145/3600100.3623720

1 INTRODUCTION

We have seen an increasing number of data-driven applications
in building systems. The amount and diversity of the data are in-
creasing. There is an unprecedented demand to organize data in
effective ways. Current building automation systems develop on-
tologies which defines the concept (naming conventions), and data
organization models. With an ontology, building data can be au-
tomatically accessed. To allow applications to be portable across
different building systems, standard ontologies have been devel-
oped, e.g., Brick, Google DBO, Haystack, and others.

Along with technical progress in batteries and energy storage,
an increasing number of data-driven building applications involve
both building systems and ESS systems [11]. E.g., a PLS application
[8] requires the power data of a chiller and the state data of a li-ion
battery. Unfortunately, existing building ontologies, e.g., Brick, are
not elaborate enough to represent the concepts of ESS systems (e.g.,
the concept of "li-ion battery" is not included in Brick).

The building industry and the ESS industry are two distinct
industries. The ESS industry has developed its own ontologies,
e.g., OntoPowsys [4], SEMANCO [12], SARGON [7], EM-KPI [10]
independent of building ontologies.

To support building-ESS applications, we need to manage the
coverage shortage of building ontologies. In this paper, we take the
approach of ontology integration to maximally reuse knowledge
from existing ESS ontologies. We present the current ontology-
assisted data access work flow and review ontology integration
techniques in §2. We present the concept of the coverage shortage
problem and the solution of an ontology integration system BESOI!
with ontology matching, merging, and repair in §3. We evaluate
BESOI in §4 on four building-ESS applications by using BESOI to
extend Brick with different ESS ontologies. The results show that
BESOI can significantly extend the coverage of Brick.

2 BACKGROUND

Building-Energy Storage System applications: Intrinsically,
ESS can assist with the interior and exterior dynamics of building
electricity usage. Building-ESS applications have been developed at
different levels [8]. The aim of peak load shaving is to minimize the
electricity costs of buildings facing grid dynamics by operating the
ESSs. PV-battery optimization (PVB) further takes the PV-battery
system into consideration. A thermal economic analysis with ESS
(TAESS) analyzes the thermal economics of buildings at the dis-
trict level. Model predictive control with ESS (MPCESS) is about
controlling both the electrical appliances and ESSs in buildings.

'We make our codes available: https://github.com/fangger4396/BESOL

https://doi.org/10.1145/3600100.3623720
https://doi.org/10.1145/3600100.3623720
https://doi.org/10.1145/3600100.3623720

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

Power-1 17/ 22t
[HVAC|
lStandard Omolog Ontology Chiller- 1K [Power-2\|

Chiller-2
1 Flow-1
Propnct?ry‘
Data Organization B F=Z]

Instance
|>Generation Flow-2 | | EZ
(a) Offline ontology instance generation

Ontology Instance } Data

Request of | Power of Chiller,
PLS Flow of Chiller, e owerflow |-
@ o — e |
5 B e e |
e | B —
Data Acquisition System Data for PLS

(b) Online data access

Figure 1: Ontology-assisted data access

Ontology-assisted data access: Applications rely on data. To
access the raw data of an entity, metadata are used to describe
entities (of concepts). The definition of metadata and the organi-
zation of metadata are called an ontology. For building systems, a
notable ontology is Brick [1]. Brick defines the metadata of a set of
entity classes (e.g., heating ventilation air condition (HVAC) system,
Chiller, and others), and a set of relationship classes (e.g. hasPart,
hasPoint, etc.) that represents the entities in buildings and their
relationship. Brick uses a Resource Description Framework (RDF)
graph to organize the Brick metadata.

An ontology allows an application to automatically access data.
The general flow of ontology-assisted data access is as follows (Fig-
ure 1). In an offline process, each specific building can generate an
ontology instance that follows a standard ontology, e.g., Brick. The
ontology instance represents a standard logic view of the data orga-
nization of this specific building. Tools [5, 9] have been developed
for such a process of generation. In the online data access process,
an application, e.g., PLS, makes a request for data (e.g., the power
data and load data), and a data acquisition system [2, 6] can follow
the ontology instance to access the raw data.

ESS Ontologies: The building industry and the ESS industry be-
long to two industry sectors. Different industries develop their own
ontologies without covering the concepts of other industries. The
ESS industry has developed ontologies with different objectives:
(1) OntoPowsys [4] was developed for ESS systems when working
with power systems, where concepts related to energy systems in
view of grids are included; (2) EM-KPI [10] was developed to en-
hance energy management at the district and building levels, where
the main concepts are concepts referring to energy evaluations;
(3) SEMANCO [12] was developed to capture concepts on diverse
sources at the building level for managing energy, and (4) SARGON
[7] was developed to describe concepts related to IoT devices, data
points, and functions in buildings.

Ontology integration: is a process to generate a coherent on-
tology from multiple input ontologies [13]. Ontology integration
has been widely used in biomedicine, collaborative manufacturing,
and geographic information systems.

Ontology integration is about reusing the knowledge of existing
ontologies. It typically consists of three steps: 1) ontology matching,
i.e., to identify the overlapping concepts between two ontologies.
For example, identifying that the "ethanol" of a chemical ontology
may be the same concept with the "alcohol” of a pharmaceutical
ontology; 2) ontology merging, i.e., to logically merge the matched
correspondence elements. For example, using an equivalence re-
lation to link the concept of "ethanol" and "alcohol"; 3) ontology

He et al.

repair, i.e., to improve the results of previous steps. For example,
finding that the relation "belongTo" and "hasOwner" are redundant
relations for "alcohol". Ontology integration can involve the use of
one ontology as a base ontology and the integration of the other
into the base, or the equal alignment of two ontologies and their
reconciliation into on ontology.

3 BUILDING-ENERGY STORAGE SYSTEM
ONTOLOGY INTEGRATION

3.1 Design Overview

Problem Statement: We aim to solve the ontology coverage prob-
lem for building-ESS applications, i.e., existing building ontologies
cannot cover the concepts of ESS systems. We leverage ontology in-
tegration techniques and develop a system to automatically extend
existing building ontologies with ESS concepts with the objective
of maximizing coverage and reducing human involvement.

We analyzed different building-ESS applications and different
ESS ontologies. We observed that as compared to building systems,
where the ontologies have comprehensive coverage for building
systems, and thus support for the applications on building system
operations and controls; there is currently a lack of comprehensive
ESS ontologies. Different ESS ontologies have different objectives
and a different fit for different applications. In this paper, we develop
in §3 and evaluate in §4 a generic ontology integration system that
can integrate different ESS ontologies. We will discuss potential
customized extensions of the generic system in §5.

We now present the Building-Energy System Ontology Inte-
gration (BESOI). BESOI can be used as a module to generate the
standard ontology module in Fig. 1. The modular design of BESOI
is shown in Figure 2. BESOI takes the building ontology and an
ESS ontology as inputs. BESOI outputs a Building-Energy System
Ontology (BESO)). BESOI consists of three modules:

1) Semantic-based ontology matching (§3.2): The objective is
to discover the overlapping concepts between the two ontologies
and solve the ambiguity of the concepts in both ontologies. We
will develop a semantic-based ontology matching algorithm to
match the entity classes, find the overlapping classes, and solve the
ambiguity of the concepts by understanding their semantics.

2) Coherence-based ontology merging (§3.3): The objective
is to logically merge the concepts and the input ontologies into a
single ontology, and solve the incoherence of the concepts among
ontologies. We will develop an incoherence resolution algorithm
to detect and resolve coherence violations, which will cause logical
conflicts in the merged ontology.

3) Redundancy-based ontology repair (§3.4): The objective is
to repair the merged ontology and solve redundant relations. We
will develop a redundant relation elimination algorithm to discover
and eliminate relation redundancy.

3.2 Semantics-based ontology matching

A correspondence is the entity classes that refer to the same concept
in different ontologies. For example, both Brick and OntoPowsys
ontology have an entity class to represent the concept of "energy
storage system" (although it is represented in different names of
classes). The "energy storage system"” is a correspondence between
the two ontologies. Ontology matching is the process of discovering
correspondences between entity classes from different ontologies.

Ontology Integration for Building Systems and Energy Storage Systems

Brick ontology and ESS ontology]

§3.2 Semantic-based Ontology Matching]
v

Correspondences]

83.3 Coherence-oriented Ontology Merging

§3.4 Redundancy-oriented Ontology Repairing
v

l
(
| " |
(Merged \g)ntologv)
l |
()

Integrated Ontology

Figure 2: An overview of the system

Entity Embedding Semantic

Classes Vector Similarity Correspondences

Energy Storage —>{ <O, O, O >
Brick Switch Status —> <0, 0, O >

OntoPowsys ‘ Batery }—){<D’D’D>
Status

Figure 3: Ontology matching by using semantic similarities

Discovering correspondences is challenging since different on-
tologies are develop with different naming conventions and thus
the concepts naturally have entity ambiguity. E.g., the concept of
"energy storage system" is represented as the class "energy stor-
age" in Brick and as "battery" in OntoPowsys; thus, "energy storage
system" is a concept with entity ambiguity for these two ontologies.

There are numerous methods of correspondence discovering,
and they fall into two categories: string-based and semantics-based
correspondence discovering. String-based correspondence discov-
ering involves conducting string-level processes on entity classes.
String-based correspondence discovering is simple, but the per-
formance is usually poor since it ignores the semantics between
entity classes. Semantic-based correspondence discovering can pro-
vide more complete and reliable results since it can capture the
similarity in semantics between entity classes. In this paper, we
focus on finding the equivalence relations and we have selected the
semantics-based correspondence discovering approach.

We develop a semantic-based correspondence discovering algo-
rithm, which consists of three steps: 1) To obtain the semantics
of entity classes of input ontologies, the entity classes are trans-
formed into embedding vectors by using a pre-trained language
model. Here, we use the Universal Sentence Encoder (USE) [3] to
encode the texts of entity classes. The USE is a well-developed
language model that computes context-aware representations of
words in a sentence that takes into account both the ordering
and identity of other words. 2) To compare the similarities be-
tween entity classes from two input ontologies, the cosine simi-
larity of the embedding vectors of entity classes is calculated; 3)
Correspondences are generated between entity classes with high
semantic similarity. A pre-defined threshold is used to control
the scale of the correspondences that are generated. We follow
the OWL standards to represent the correspondences by using
the relation owl:equivalentClass (e.g., <Brick:energy_storage,
owl:equivalentClass, OntoPowsys:battery> represents that the
"energy storage" of Brick is equal to the "battery" of OntoPowsys).
3.3 Coherence-based ontology merging

A coherence violation occurs when an entity class of the original
ontology can never be satisfied, i.e., when no instance in practice
can meet all of the requirements to be a member of the class. E.g.,
in OntoPowsys, the "thermal storage system" is logically disjointed

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

from the class "Battery". This means that an entity can not be a "ther-
mal storage system" and a "battery” at the same time. However, if
another entity class, "energy storage", of Brick is equivalent to "ther-
mal storage system" and "battery” concurrently, then this violates
the disjointed relation in OntoPowsys and results in incoherence.
We developed an incoherence resolution algorithm that is com-
prised of two steps: 1) detecting the incoherence between the corre-
spondences and the original ontologies, where the parent classes
of an entity class are traversed to determine if there is incoherence
since incoherence not only occurs between a pair of entity classes
themselves but also between their parent classes(e.g., if "setpoint”
is disjointed from "status", then "load setpoint" should be disjointed
frp, "load status"); and 2) resolving the detected incoherence by
removing the causal correspondences. We defined two types of in-
coherence to be detected: 1) disjointness-based incoherence, caused
by the relation of disjointness between two distinct classes, and 2)
inheritance-based incoherence, where a class cannot equal to a par-
ent class and its child class at the same time (e.g., "energy storage"
can not equal to "battery” and "li-ion battery" simultaneously, since
"battery" and "li-ion battery" have a parent-child relation).

3.4 Redundancy-based ontology repair

A relation redundancy occurs when there is a relation of an ontol-
ogy that can be subsumed by a relation in another ontology. E.g.,
the "hasStatus” is a relation between "battery" and the "status" in
OntoPowsys, and "hasPoint" is another relation between "energy
storage" and the "switch status" in Brick. Once "battery" and the
"status" class correspond to "energy storage" and the "switch status”
class, then the "hasStatus" and "hasPoint" are redundant relations.

We developed a redundant relation elimination algorithm that
contains three steps: 1) to extract the relations in the merged on-
tology, for each entity class, the merged ontology is traversed to
find its possible relations; 2) to detect the relation redundancy,
for each extracted relation, a check is carried out to determine
if there is anther relation that can be used with the same en-
tity it relates to; 3) to eliminate the detected relation redundancy,
a subsumption relation is added that is, by using the owl rela-
tion rdfs: subPropertyOf to describe the redundancy (i.e., <On-
toPowsys:hasStatus, rdfs: subPropertyOf, Brick:hasPoint> repre-
sents the situation that the "hasStatus" of OntoPowsys is a sub-
property of the "hasPoint" of Brick).

4 EVALUATION

We evaluate BESOI across a set of building-ESS applications with
expressiveness in concepts: PLS, PVB, MPCESS, and TAESS. Our
focus is on the coverage of integrated ontologies for the concepts
required by the applications. We also evaluate the automated op-
erations of BESOI for ontology integration. We use two manual
ontology aligning strategies as the baseline. We use the BESOI to
extend Brick with four different ESS ontologies mentioned above.

4.1 Concept Coverage

Metrics We evaluate the usability of integrated BESO by using
the coverage of concepts for applications. Formally, the coverage
of concepts is defined as C = N, /Ng. Here, N, is the number of
concepts that an ontology contains for an application, and N is
the number of concepts that an application requires.

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

He et al.

Table 1: Coverage of original ontologies (Brick and ESS ontology) and integrated BESO

Avplication | # of Concents Coverage of Original Ontology Coverage of BESO

PP P Brick OntoPowsys | SEMANCO | SARGON EM-KPI | Brick+OntoPowsys | Brickt SEMANCO | Brick+SARGON | Brick+EM-KPI
PLS 47 32(68.09%) | 16 (34.04%) | 15 (31.91%) | 12 (25.53%) | 15 (31.91%) 45 (95.74%) 37 (78.72%) 35 (74.47%)) 33 (70.21%)
PVB 71 43 (60.56%) | 30 (42.25%) | 15 (21.13%) | 16 (22.54%) 19.72%) 68 (95.77%) 51 (71.83%) 49 (69.01%) 53 (74.65%)
MPCESS 43 16 (37.21%) | 16 (37.21%) | 21 (48.84%) | 11 (22.45%) 22.45%) 30 (69.77%) 36 (83.72%) 22 (51.16%) 24 (55.81%)
EPPESS 39 31(79.49%) | 12 (30.77%) | 14 (25.45%) | 14 (23.73%) 30.91%) 35 (89.747%) 34 (87.18%) 33 (34.61%) 36 (92.31%)

Results Table 1 shows the coverage of the original ontologies
and the integrated BESOs across four different applications. We
can see that the coverage of integrated BESOs is much higher than
that of the original ontologies. The highest coverage of the inte-
grated BESOs for the four applications is 95.74%, 95.77%, 83.72%,
and 92.31%, respectively. As a comparison, a single Brick ontology
has a coverage of 68.09%, 60.56%, 37.21%, and 79.49%, respectively.
Due to the insufficient coverage of original ontologies, the coverage
of integrated ontologies cannot reach 100%. This clearly shows that
the integrated BESOs can provide more complete coverage for cer-
tain applications and thus have reliable usability. We can also see
that the original ontology can influence the BESOs within specific
applications. For example, the integrated BESO Brick+OntoPowsys
has the highest coverage of the application PLS, since OntoPowsys
is an ontology that was developed for power grids and contains nu-
merous concepts related to the properties of ESS (e.g. the charging
rate of a battery), which are required by the PLS.

4.2 Effectiveness in an Automated Process

Baseline We use two manual ontology alignment strategies as our
baseline: 1) For developers familiar with ESS ontology: given each
class of Brick, the developer can directly point out the most likely
corresponding class in ESS ontology. 2) For developers familiar
with Brick: given each class of Brick, from the root classes of ESS
ontology the developer goes through the child classes and selects
the most possible corresponding class from among the child classes
until the final correspondence is determined.

Metrics We now study how much effort the BESOI can save by
automating the ontology integration process. Since BESOI consists
of three modules (ontology matching, merging, and repair), we
count the number of steps of primary operations conducted in the
three modules. For ontology matching, the dominant operation is
calculating the semantic similarity of entity classes. For ontology
merging and repair, the primary operation is to detect violations and
redundancies by checking the entity classes in the correspondence.

Table 2: Effectiveness of ontology integration by using the
BESOI and through the manual ontology alignment

#of #of

Operations | Operations
by Manual | by Manual
Strategy 1 | Strategy 2

#of # ot} #of #of #of #of #of
Entity

Ontology | Entity | ('Y | Overlapped | Operations | Operations | Operations | Operations

Classes | e | Concepts | for Matching | for Merging | for Repair | in Total

Brick+
OntoPowsys
Brick+
SEMANCO
Brick+
SARGON
Brick+
EM-KPI

1682 246 124 (50.41%) | 353,256 4,270 559 358,082 1,436 8,616

2357 921 236 (25.63%) | 1,322,556 1,557 397 1,324,510 1,436 10,052

1593 | 157 91(57.96%) | 225,452 3,975 546 229,973 1,436 7,180

1558 | 122

73(59.84%) | 175,192 2,144 487 177,823 1,436 5,744

Results Table 2 shows number of operations of three modules
in the ontology integration process. We can see that all four pairs of
input ontologies were processed by a large number of automation
processes. The total number of operations was around 358k, 1,325k,
230k, and 178k for the four different input ontologies. We can also
see that the dominant module is the ontology matching module,
where 353k, 1322k, 225k, and 175k operations are performed for the
four pairs of inputted ontologies, respectively. We also count the
numbers of operation of manual ontology aligning. An operation

is that the developer compare two classes between the ontologies
and decide whether to construct a correspondence. We can see that
the numbers of operation of manual ontology aligning for strategy
1 is all 1,436, and for strategy 2 is 8,616, 10,052, 7,180, and 5,744.
Note that all of these operations can be completely avoided by the
automated process. We argue that these automated processes can
significantly reduce efforts compared with manual development.

5 CONCLUSION AND FUTURE WORK

In this paper, we studied the coverage shortage problem of build-
ing ontology in covering energy storage system (ESS) concepts
when supporting building-ESS applications. We developed BESOI,
a building-ESS ontology integration system. Our evaluation showed
that BESOI can effectively extend the concept coverage of a building
ontology, Brick, in an automated integration process.

Many future studies can be conducted: (1) To develop a generic
ontology integration system that can integrate multiple ESS on-
tologies, and even ontologies from other industry sectors, e.g., EV
and PV are two close sectors related to building applications; (2) To
develop specific modules that can solve individual problems such
as the aforementioned "subsumption" relations. (3) To substantially
update the developed integrated ontology following the evolution
of the original ontologies.

ACKNOWLEDGMENTS

Dan Wang’s work is supported by RGC-GRF 15210119, 15209220,
15200321, 15201322, from ITC via project No. K-BBY1, RGC-CRF
C5018-20G, ITC ITF-ITS/056/22MX. Yaojie Sun’s work is supported
by Shanghai Engineering Research Center for Artificial Intelligence
and Integrated Energy System (Grant No. 19DZ2252000).

REFERENCES

[1] B.Balaji, A. Bhattacharya, G. Fierro, et al. 2016. Brick: Towards a Unified Metadata
Schema For Buildings. In Proc. ACM BuildSys’16.
[2] L L.Bennani, A. K. Prakash, et al. 2021. Query relaxation for portable brick-based
applications. In Proc. of Buildsys’ 21.
[3] D.Cer Y. Yang, , et al. 2018. Universal sentence encoder for English. In Proc. of
EMNLP-demos 2018.
[4] A.Devanand, G. Karmakar, et al. 2020. OntoPowSys: A power system ontology
for cross domain interactions in an eco industrial park. Energy and AI (2020).
[5] G. Fierro, J. Koh, Y. Agarwal, R. K. Gupta, and D. E Culler. 2019. Beyond a house
of sticks: Formalizing metadata tags with brick. In Proc. of ACM Buildsys’ 19.
[6] G.Fierro, M. Pritoni, et al. 2018. Mortar: an open testbed for portable building
analytics. In Proc. of ACM Buildsys’ 18.
[7] M. Haghgoo, 1. Sychev, et al. 2020. SARGON-Smart energy domain ontology.
IET Smart Cities (2020).
[8] R. Hidalgo-Leon, D. Siguenza, et al. 2017. A survey of battery energy storage
system (BESS), applications and environmental impacts in power systems. In
2017 ieee second ecuador technical chapters meeting (etcm). IEEE.
[9] J. Koh, B. Balaji, et al. 2018. Scrabble: transferrable semi-automated semantic
metadata normalization using intermediate representation. In Proc. BuildSys’18.
[10] Y.Li, R. Garcia-Castro, et al. 2019. Enhancing energy management at district and
building levels via an EM-KPI ontology. Automation in Construction (2019).
[11] J. Liu, X. Chen, et al. 2020. Energy storage and management system design
optimization for a photovoltaic integrated low-energy building. Energy (2020).
[12] L.Madrazo, A. Sicilia, et al. 2012. SEMANCO: Semantic tools for carbon reduction
in urban planning. In Proc. of ECPPM 2012.
L. Osman, S. B. Yahia, et al. 2021. Ontology integration: approaches and challeng-
ing issues. Information Fusion (2021).

(13

	Abstract
	1 Introduction
	2 Background
	3 Building-Energy Storage System Ontology Integration
	3.1 Design Overview
	3.2 Semantics-based ontology matching
	3.3 Coherence-based ontology merging
	3.4 Redundancy-based ontology repair

	4 Evaluation
	4.1 Concept Coverage
	4.2 Effectiveness in an Automated Process

	5 Conclusion and Future Work
	Acknowledgments
	References

